Combined effects of resistance training and calorie restriction on mitochondrial fusion and fission proteins in rat skeletal muscle.

نویسندگان

  • Yu Kitaoka
  • Koichi Nakazato
  • Riki Ogasawara
چکیده

Recent studies have demonstrated that resistance exercise leads not only to muscle hypertrophy, but it also improves mitochondrial function. Because calorie restriction (CR) has been suggested as a way to induce mitochondrial biogenesis, we examined the effects of resistance training with or without CR on muscle weight and key mitochondrial parameters in rat skeletal muscle. Four weeks of resistance training (thrice/wk) resulted in increased gastrocnemius muscle weight by 14% in rats fed ad libitum (AL). The degree of muscle-weight increase via resistance training was lower in rats with CR (7.4%). CR showed no effect on phosphorylation of mammalian target of rapamycin (mTOR) signaling proteins rpS6 and ULK1. Our results revealed that CR resulted in elevated levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein, a known master regulator of mitochondrial biogenesis. Resistance training alone also resulted in increased PGC-1α levels in skeletal muscle. The magnitude of the increase in PGC-1α was similar in rats in both the CR and AL groups. Moreover, we found that resistance training with CR resulted in elevated levels of proteins involved in mitochondrial fusion (Opa1 and Mfn1), and oxidative phosphorylation, whereas there was no effect of CR on the fission-regulatory proteins Fis1 and Drp1. These results indicate that CR attenuates resistance training-induced muscle hypertrophy, and that it may enhance mitochondrial adaptations in skeletal muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Aerobic Exercise with Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles

Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear. Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles.  Methods: Pa...

متن کامل

The Effect of Six Weeks of Endurance Training on Mitochondrial Level of OPA-1 Quadriceps in Streptozotocin-induced Diabetic Rats

Introduction: Mitochondrial dynamic disorders are attributed to many diseases such as diabetes. MFN2 and OPA-1 proteins are the main regulators of fusion, and DRP1 is the essential protein regulating mitochondrial fission. Increasing or decreasing the expression of relevant genes will cause an imbalance between these two processes. This study evaluated the effect of six weeks of aerobic trainin...

متن کامل

Role of resistance training with the approach of blood flow restriction in skeletal muscle cell growth

Background: The aim of this study was to investigate the response of ERK1/2 protein and muscular morphological adaptations to a period of resistance training with local blood flow restriction. Materials and methods: Twenty healthy male Wistar rats without clinically evident disease (5 weeks old, 120±7 g weight) were divided into four equal groups: control, control with limited blood flow...

متن کامل

High-Lard and High-Fish Oil Diets Differ in Their Effects on Insulin Resistance Development, Mitochondrial Morphology and Dynamic Behaviour in Rat Skeletal Muscle

Fish oil (mainly omega 3 polyunsaturated fatty acids), differently from lard (mainly saturated fatty acids) has been suggested to have anti-inflammatory effects associated with amelioration of insulin sensibility. An important role in skeletal muscle insulin resistance development has been recently attributed to mitochondrial dynamic behavior. Mitochondria are dynamic organelles that frequently...

متن کامل

Effect of 6 weeks of resistance exercise preconditioning on mitochondrial dynamics in cardiac tissue of diabetic rats

Background and Objectives: Diabetic cardiomyopathy refers to changes in the heart as a result of altered glucose homeostasis, leading to ventricular dysfunction, and it is associated with the mitochondrial abnormality. Since physical exercise has been known as cardioprotective, the aim of the present study was to investigate the effect of 6 weeks of resistance exercise preconditioning on mitoch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 121 3  شماره 

صفحات  -

تاریخ انتشار 2016